



#### MYHIP WORKFLOW



**1.** Medacta receives the CT images of the patient's leg.



**2.** A virtual position of the implant is proposed to the surgeon who can modify the planning as he wishes.



**3.** Starting from the 3D reconstruction of the joint and following the surgeon preferences the MyHip preoperative planning is performed.



**4.** Once the planning has been validated by the surgeon, the in-house manufacturing process starts.

#### LEADER IN PATIENT MATCHED TECHNOLOGY



# myhip.medacta.com

#### REFERENCES

 Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip replacement arthroplasties. J bone Joint Sur Am. 1978;60:217-220. [2] Nishii T, Sugano N, Miki H, Koyama T, Takao M, Yoshikawa H. Influence of component positions on dislocation: computed tomographic evoluations in a consecutive series of total hip arthroplasty. 2004;19:162-166. [3] Röder C, Vogel R, Burri L, Dietrich D, Stubb IP. Total hip arthroplasty: leg length inequality impairs functional outcomes and patient satisfaction. BMC Musculoskeletal Disorders. 2012; 13:95. [4] Austin MS, Hazack WJ, Sharkey PF, Rahman RH. Stability and leg length equality in Total Hip Arthroplasty. 2003; 18(3) suppl1):88400. [5] Cassidy KA, Noticewala MS, Macaulay W, Lea JH, Geller JA. Effect of femoral offset on pain and function after total hip arthroplasty. J Arthroplasty. 2012; 27(10):1863-1869. [6] Wan Z, Boutary M et al. The influence of acetabular component position on Wear in TH-A. J Arthroplasty. 2000 Jan;23(1):15. [7] D'Itima DD, Urquhart AG, Buehler KO, et al. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am. 2000 Mar;28(1):315-51. [8] Willer ME. Total hip arthroplasty. Clin Ontop 1992;274:12:21. [10] Sariali E, Mouttet A, Pasquier G, Durante E, Catone Y. Accuracy of reconstruction of the hip using computerised three-dimensional preoperative planning face arementies modular neck. J Bone Joint Surg Bill 2009;91:8:33:40. [11] Sariali E, Mauprivez R, Khiami F, Pascat/Musselard H, Catonné Y. Accuracy of the preoperative planning in developerative planning and a cementless modular neck. J Bone Joint Surg Bill 2009;91:8:33:40. [11] Sariali E, Mauprivez R, Khiami F, Pascat/Musselard H, Catonné Y. Accuracy of the preoperative planning for eventiless total hip arthroplasty. Clin Ontop 1992;274:12:20. [12] Small T, Kebs V, Molloy R, Bryan J. Comparison of Acetabular Shell Postion Using Patient Specific Instruments vs. Standa



Hip



PRECISION ON DEMAND



# Brochure

р

Knee

spine





# PATIENT MATCHED TECHNOLOGY

#### PRECISION ON DEMAND

Continuing challenges in Total Hip Replacement (THR) include:

- Dislocation prevention<sup>[1,2]</sup>
- Leg length discrepancy assessment<sup>[3,4]</sup>
- Femoral offset restoration<sup>[5]</sup>
- Cup positioning to avoid edge loading<sup>[6]</sup>
- Impingement analysis<sup>[7]</sup>
- Range of Motion assessment<sup>[7]</sup>

Medacta designed the MyHip to address these issues, focusing on patient well-being and improving accuracy in implant positioning and sizing, through:

- Precise **3D preoperative planning**<sup>[8,9]</sup> which can halve the number of alignment outliers when compared to 2D templating.[10,11]
- Patient-specific guides<sup>[12,13,14]</sup> which can reproduce the 3D preoperative plan.

MyHip is a system providing 3D preoperative planning and patient-specific guides, developed following the success of Medacta Patient Matched Technology

### WHY MYHIP?



#### Accurate implant positioning and sizing

 Complete 3D preoperative planning with 3D kinematic simulation, which considers pelvic tilt

- Complete in-house technology the MyHip process is entirely performed by Medacta
- A personal MyHip technician just for you
- Only 3 weeks lead time the shortest delivery time in today's market for this technology

## COMPLETE 3D PREOPERATIVE PLANNING

The MyHip 3D preoperative planning is based on the surgeon's specific preferences and patient's anatomy, and submitted to the surgeon for approval through an **interactive website** available at

## https://myhip.medacta.com

The 3D preoperative planning considers all the standard parameters used in the THR practice. Special features are:

- Patient pelvic tilt assessed through a validated image processing protocol<sup>[15]</sup>, which combines CT and X-Ray imaging. Considering pelvic tilt minimises the risk of inaccurate implant positioning<sup>[16]</sup>.
- Three-dimensional kinematic simulation of the hip ROM, to effectively predict the performance of the in vivo implants. This allows to minimise the risk of impingement, squeaking with ceramic-on-ceramic bearing<sup>[17]</sup> and edge loading<sup>[18]</sup> during the patient's daily activity.





Implant positioning simulated on the original CT

Following surgeon approval of the 3D preoperative plan, MyHip guides are produced.

#### **MYHIP GUIDES**

MyHip guides are designed to accurately reproduce the surgeon's preoperative plan. MyHip guides are:

- Available for both femur and acetabulum
- Unaffected by intraoperative patient movement
- Positioned unambiguously on the bone
- Available for any preferred approach

ANTERIOR FEMORAL GUIDE





3D kinematic simulation

